Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguabis(ethylenediamine- $\kappa^2 N, N'$)zinc(II) bis(4-aminonaphthalene-1-sulfonate) dihydrate

Ming-Tian Li,^a Xu-Cheng Fu,^b Xiao-Yan Wang^b and Cheng-Gang Wang^a*

^aDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, and ^bChemistry and Biology Department, West Anhui University, Liu An, Anhui 237000, People's Republic of China Correspondence e-mail: wangcg23@yahoo.com.cn

Received 11 May 2007; accepted 17 May 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.086; data-to-parameter ratio = 14.2.

In the title compound, $[Zn(C_2H_8N_2)_2(H_2O)_2](C_{10}H_8NO_3S)_2$. 2H₂O, the Zn^{II} cation lies on an inversion centre and has a distorted octahedral coordination geometry, defined by four N atoms from two ethylenediamine ligands and two water O atoms. In the crystal structure, pairs of 4-aminonaphthalene-1sulfonate anions are connected via N-H···O hydrogen bonds to form centrosymmetric $R_2^2(16)$ rings. Cations, anions and water molecules are further connected by N-H···O, O-H···O and O-H···N hydrogen bonds and π - π stacking interactions [with a centroid-to-centroid distance of 3.5099 (13) Å] to form a three-dimensional network.

Related literature

The isostructural Ni^{II}, Cu^{II} and Cd^{II} analogues have been reported previously (Li et al., 2005a,b, 2006).

For related literature, see: Gunderman et al. (1997); Işık et al. (2005); Kosnic et al. (1992); Shubnell et al. (1994).

Experimental

Crystal data $[Zn(C_2H_8N_2)_2(H_2O)_2]$ - $(C_{10}H_8NO_3S)_2 \cdot 2H_2O$ $M_r = 702.11$ Monoclinic, $P2_1/c$ a = 12.425 (3) Å b = 9.6851 (19) Å c = 12.305 (3) Å

 $\beta = 90.50 \ (3)^{\circ}$ $V = 1480.7 (5) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 1.04 \text{ mm}^-$ T = 292 (2) K $0.46 \times 0.36 \times 0.20 \text{ mm}$ metal-organic compounds

 $R_{\rm int} = 0.073$

9734 measured reflections

3354 independent reflections

2729 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.647, T_{\max} = 0.820$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.086$	independent and constrained
S = 0.98	refinement
3354 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
236 parameters	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$
10 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdots O4^{i}$ $N1 - H1A \cdots O2^{ii}$ $N2 - H2A \cdots O2^{iii}$ $N2 - H2B \cdots O5$ $N3 - H3A \cdots O2^{iv}$ $N3 - H3B \cdots O3^{v}$ $O1 - H1E \cdots O5$	0.86 (2) 0.836 (18) 0.87 (2) 0.915 (18) 0.782 (19) 0.836 (19) 0.79 (2)	2.41 (2) 2.570 (19) 2.28 (2) 2.113 (19) 2.67 (2) 2.246 (19) 2.08 (2)	3.170 (2) 3.337 (3) 3.109 (2) 2.992 (3) 3.451 (2) 3.076 (3) 2.834 (3)	147 (2) 153 (2) 159 (2) 161 (2) 176 (2) 171.6 (18) 158 (2)
$05 - H5B \cdots N3^{vi}$ $05 - H5A \cdots O4^{vii}$ $01 - H1F \cdots O4^{i}$	0.87 (2) 0.77 (2) 0.75 (2)	2.02 (2) 2.15 (2) 2.11 (2)	2.882 (3) 2.918 (3) 2.818 (2)	173 (3) 172 (3) 159 (3)

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1; (iv) $\begin{array}{c} -x+1,y+\frac{1}{2},-z+\frac{1}{2}; \ \, ({\rm v}) & -x+1,-y+2,-z; \ \, ({\rm v}i) & -x+1,-y+1,-z+1; \ \, ({\rm v}ii) \\ x,-y+\frac{3}{2},z+\frac{1}{2}. \end{array}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactions and Green Chemical Technology (grant No. RCT2004011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2390).

References

- Bruker (2001). SHELXTL (Version 6.10), SMART (Version 5.62), SAINT (Version 6.45) and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Gunderman, B. J., Kabell, I. D., Squattrio, P. J. & Dubey, S. N. (1997). Inorg. Chim. Acta, 258, 237-246.
- Işık, S., Köysal, Y., Yavuz, M., Heren, Z. & Vurucu, L. (2005). Acta Cryst. E61, m2066-m2068.
- Kosnic, E. J., Lynn McClymont, E., Hodder, R. A. & Squattrio, P. J. (1992). Inorg. Chim. Acta, 201, 143-151.
- Li, M.-T., Wang, C.-G. & Fu, X.-C. (2006). Acta Cryst. C62, m434-m436.
- Li, M.-T., Wang, C.-G., Wu, Y. & Fu, X.-C. (2005a). Acta Cryst. E61, m1613m1615.
- Li, M.-T., Wang, C.-G., Wu, Y. & Fu, X.-C. (2005b). Acta Cryst. E61, m1660m1661.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shubnell, A. J., Kosnic, E. J. & Squattrio, P. J. (1994). Inorg. Chim. Acta, 216, 101-112.

Acta Cryst. (2007). E63, m1677 [doi:10.1107/S1600536807024439]

Diaquabis(ethylenediamine- $\kappa^2 N, N'$)zinc(II) bis(4-aminonaphthalene-1-sulfonate) dihydrate

M.-T. Li, X.-C. Fu, X.-Y. Wang and C.-G. Wang

Comment

Due to the weak coordination strength of sulfonate anions with transition metals, the sulfonates usually act as the counterbalance of the charge (Kosnic et al., 1992; Shubnell et al., 1994; Gunderman et al., 1997). Herein, we report the crystal structure of such a novel compound, $[Cu(en)_2(H_2O)_2](ans)_2 2H_2O$, (I), (en = diethylenediamine; ans = 4-aminonaphthalene-1-sulfonate). The molecular structure of (I) is shown in Fig.1. The Zn atom lies on an inversion center and has has a distorted octahedral geometry, coordinated by four N atoms from two diethylenediamine ligands, which lie in the equatorial plane, and by two water O atoms occupying the axial sites. The average Zn-N bond length of 2.1278 (16) Å, is longer than the Zn—N bond distances in $[Zn(en)_2(H_2O)_2](sap)_23H_2O$ (sap = 2-sulfanilamidopyrimidine; Zn—N 1.996 (2)–2.016 (2) Å) (Isik et al., 2005). The Zn-O bond distance of 2.2386 (17) Å, is significantly shorter than the Zn-O distances in [Zn(en)₂(H₂O)₂](sap)₂ (Zn–O 2.49 (2) Å and 2.68 (2) Å)(Isik et al., 2005). The naphthalene ring is essentially planar (r.m.s. deviation 0.002 Å), with the greatest deviation from planarity being 0.0258 (18)Å for C6. The S and N atoms deviate by 0.1632 (5) Å and 0.0035 (19) Å from the naphthalene plane, respectively. As shown in Fig.2, an organic cation layer is linked to an inorganic anionic layer through a series of N-H-O, O-H-O and O-H-N hydrogen bonds, and adjacent 4-aminonaphthalene-1-sulfonate anions are antiparallel, showing significant π - π interactions interactions. The planeto-plane distances and displacement angles of $Cg1\cdots Cg2^{i}$ are 3.378, 3.367 Å and 1.04, 16.37°, respectively [Cg1 and Cg2 are C3—C7/C12 and C7—C12 ring centroids; symmetry code: (i) 1 - x, 2 - y, -z]). These interactions together with the hydrogen bonds stabilize the crystal structure.

Experimental

Ethylenediamine (0.06 g, 1 mmol) was added to an aqueous solution (20 mL) of $Zn(OAc)_2$ ²H₂O(0.110 g, 0.5 mmol). After the mixture was stirred for 2 h at the room temperature, the solution was then treated with 4-aminonaphthalene-1-sulfonic acid sodium salt tetrahydrate (0.32 g, 1 mmol) in 10 ml e thanol. After filtration, the colorless solutions were allowed to stand at room temperature. The well shaped colorless block crystals of the title complex were obtained by slow evaporation of solvent about one week.

Refinement

The water H atoms and amine H atoms were located in a difference Fourier map and refined with the restraints O—H = 0.75 (2)–0.87 (2) Å and N—H = 0.782 (19)–0.915 (2) Å, and $U_{iso}(H) = 1.5U_{eq}(\text{carrier})$. H atoms on C atoms were placed in geometrically idealized positions and refined in riding mode, with C—H = 0.93 or 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing ellipsoids at the 50% probability level [symmetry code: -x, -y, 1 - z].

[Diaquabis(ethylenediamine- $\kappa^2 N$, N')zinc(II)] [bis(4-aminonaphthalene-1-sulfonate)] dihydrate

 $F_{000} = 736$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.7 - 28.1^{\circ}$

 $\mu = 1.04 \text{ mm}^{-1}$

T = 292 (2) K

Block, colourless

 $0.46 \times 0.36 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.575 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3865 reflections

Crystal data

 $[Zn(C_2H_8N_2)_2(H_2O)_2](C_{10}H_8NO_3S)_2 \cdot 2H_2O$ $M_r = 702.11$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.425 (3) Å b = 9.6851 (19) Å c = 12.305 (3) Å $\beta = 90.50$ (3)° V = 1480.7 (5) Å³ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer	3354 independent reflections
Radiation source: fine-focus sealed tube	2729 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
T = 292(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -12 \rightarrow 16$

$T_{\min} = 0.647, \ T_{\max} = 0.820$	$k = -12 \rightarrow 12$
9734 measured reflections	$l = -10 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map		
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites		
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of independent and constrained refinement		
$wR(F^2) = 0.086$	$w = 1/[\sigma^2(F_0^2) + (0.0458P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$		
<i>S</i> = 0.98	$(\Delta/\sigma)_{max} < 0.001$		
3354 reflections	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$		
236 parameters	$\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$		
10 restraints	Extinction correction: none		
Primary atom site location: structure invariant direct			

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.0000	0.0000	0.5000	0.02820 (11)
N1	0.00131 (16)	0.16231 (19)	0.38096 (15)	0.0372 (4)
N2	-0.01612 (14)	0.16750 (18)	0.60803 (15)	0.0338 (4)
01	0.17965 (13)	0.00886 (17)	0.51362 (15)	0.0394 (4)
C1	0.02957 (17)	0.2888 (2)	0.4403 (2)	0.0461 (6)
H1C	0.0134	0.3690	0.3959	0.055*
H1D	0.1060	0.2894	0.4572	0.055*
C2	-0.03471 (18)	0.2943 (2)	0.54452 (19)	0.0466 (6)
H2C	-0.0131	0.3742	0.5870	0.056*
H2D	-0.1107	0.3032	0.5273	0.056*
C3	0.38445 (13)	0.94913 (18)	0.18557 (14)	0.0241 (4)
C4	0.44306 (15)	1.0471 (2)	0.24009 (15)	0.0296 (4)
H4	0.4095	1.1022	0.2916	0.036*
C5	0.55247 (15)	1.06581 (19)	0.21962 (16)	0.0310 (4)

Н5	0.5904	1.1337	0.2573	0.037*
C6	0.60475 (15)	0.98605 (17)	0.14515 (15)	0.0266 (4)
C7	0.54778 (14)	0.87878 (17)	0.08887 (14)	0.0235 (4)
C8	0.59937 (15)	0.79072 (19)	0.01412 (15)	0.0303 (4)
H8	0.6727	0.8010	0.0020	0.036*
C9	0.54368 (16)	0.6911 (2)	-0.04046 (16)	0.0354 (5)
Н9	0.5788	0.6347	-0.0900	0.043*
C10	0.43368 (16)	0.67369 (19)	-0.02191 (15)	0.0337 (4)
H10	0.3962	0.6051	-0.0591	0.040*
C11	0.38054 (14)	0.75566 (17)	0.04986 (14)	0.0274 (4)
H11	0.3073	0.7426	0.0606	0.033*
C12	0.43560 (14)	0.86090 (16)	0.10847 (14)	0.0228 (4)
N3	0.71563 (14)	1.00495 (19)	0.12848 (16)	0.0339 (4)
02	0.21294 (11)	0.80591 (14)	0.23913 (12)	0.0429 (4)
O3	0.19412 (12)	0.98569 (15)	0.10337 (13)	0.0431 (4)
O4	0.22193 (11)	1.04667 (15)	0.29095 (12)	0.0408 (4)
O5	0.20692 (14)	0.1749 (2)	0.70145 (14)	0.0477 (4)
S1	0.24345 (4)	0.94473 (5)	0.20564 (4)	0.02944 (13)
H1E	0.2027 (19)	0.060 (2)	0.558 (2)	0.056 (9)*
H1F	0.206 (2)	0.023 (3)	0.4602 (19)	0.055 (9)*
H3A	0.7328 (17)	1.075 (2)	0.1555 (19)	0.045 (7)*
H3B	0.7366 (17)	0.9997 (19)	0.0642 (16)	0.030 (6)*
H5A	0.215 (2)	0.250 (2)	0.720 (2)	0.077 (11)*
H5B	0.226 (2)	0.124 (3)	0.757 (2)	0.067 (9)*
H2A	-0.0723 (18)	0.151 (2)	0.6477 (19)	0.062 (8)*
H1A	-0.0590 (15)	0.169 (2)	0.3507 (18)	0.048 (7)*
H1B	0.0491 (19)	0.146 (3)	0.332 (2)	0.072 (9)*
H2B	0.0438 (16)	0.175 (2)	0.6514 (18)	0.049 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03346 (19)	0.02544 (17)	0.02576 (18)	0.00102 (12)	0.00379 (13)	0.00048 (12)
N1	0.0362 (11)	0.0407 (10)	0.0347 (10)	0.0026 (8)	0.0058 (9)	0.0084 (8)
N2	0.0300 (9)	0.0361 (9)	0.0354 (10)	0.0002 (7)	0.0058 (8)	-0.0064 (8)
01	0.0314 (8)	0.0494 (10)	0.0373 (9)	-0.0016 (7)	0.0041 (7)	-0.0020 (8)
C1	0.0479 (13)	0.0299 (10)	0.0605 (15)	-0.0024 (9)	0.0058 (11)	0.0109 (10)
C2	0.0516 (13)	0.0294 (10)	0.0589 (15)	0.0065 (10)	0.0076 (12)	-0.0037 (10)
C3	0.0252 (9)	0.0256 (8)	0.0215 (9)	-0.0002 (7)	0.0032 (7)	0.0040 (7)
C4	0.0349 (10)	0.0307 (9)	0.0233 (9)	0.0012 (8)	0.0042 (8)	-0.0034 (8)
C5	0.0355 (10)	0.0289 (9)	0.0284 (10)	-0.0056 (8)	-0.0025 (8)	-0.0042 (8)
C6	0.0270 (9)	0.0283 (9)	0.0244 (9)	-0.0026 (7)	-0.0012 (8)	0.0067 (7)
C7	0.0272 (9)	0.0231 (8)	0.0203 (9)	0.0014 (7)	0.0011 (7)	0.0045 (7)
C8	0.0297 (10)	0.0325 (10)	0.0288 (10)	0.0050 (8)	0.0061 (8)	0.0029 (8)
C9	0.0432 (11)	0.0315 (10)	0.0317 (11)	0.0056 (9)	0.0081 (9)	-0.0054 (8)
C10	0.0443 (12)	0.0267 (9)	0.0301 (11)	-0.0049 (8)	0.0004 (9)	-0.0042 (8)
C11	0.0284 (9)	0.0273 (9)	0.0267 (10)	-0.0034 (7)	0.0010 (8)	0.0013 (8)
C12	0.0278 (9)	0.0221 (8)	0.0186 (8)	0.0007 (7)	0.0026 (7)	0.0034 (7)

O2 0.0391 (8) 0.0380 (8) 0.0518 (10) -0.0064 (6) 0.0161 (7) 0 O3 0.0302 (8) 0.0623 (10) 0.0370 (9) 0.0054 (6) 0.0007 (7) 0 O4 0.0390 (8) 0.0435 (8) 0.0400 (9) 0.0044 (7) 0.0145 (7) - O5 0.0522 (10) 0.0440 (10) 0.0466 (10) -0.0010 (8) -0.0133 (8) 0 S1 0.0265 (2) 0.0334 (3) 0.0286 (3) 0.00020 (19) 0.00845 (19) -	0.0035 (7) 0.0058 (7) -0.0087 (7)	
O3 0.0302 (8) 0.0623 (10) 0.0370 (9) 0.0054 (6) 0.0007 (7) 0 O4 0.0390 (8) 0.0435 (8) 0.0400 (9) 0.0044 (7) 0.0145 (7) - O5 0.0522 (10) 0.0440 (10) 0.0466 (10) -0.0010 (8) -0.0133 (8) 0 S1 0.0265 (2) 0.0334 (3) 0.0286 (3) 0.00020 (19) 0.00845 (19) -).0058 (7) -0.0087 (7)	
O4 0.0390 (8) 0.0435 (8) 0.0400 (9) 0.0044 (7) 0.0145 (7) - O5 0.0522 (10) 0.0440 (10) 0.0466 (10) -0.0010 (8) -0.0133 (8) 0 S1 0.0265 (2) 0.0334 (3) 0.0286 (3) 0.00020 (19) 0.00845 (19) -	-0.0087 (7)	
O5 0.0522 (10) 0.0440 (10) 0.0466 (10) -0.0010 (8) -0.0133 (8) 0 S1 0.0265 (2) 0.0334 (3) 0.0286 (3) 0.00020 (19) 0.00845 (19) -	0.0007(7)	
S1 0.0265 (2) 0.0334 (3) 0.0286 (3) 0.00020 (19) 0.00845 (19)	0.0002 (8)	
	-0.0001 (2)	
Geometric parameters (A, °)		
Zn1—N2 2.1080 (17) C4—H4 0.9300		
Zn1—N2 ⁱ 2.1080 (17) C5—C6 1.367 (3)	
Zn1—N1 ⁱ 2.1488 (18) C5—H5 0.9300		
Zn1—N1 2.1488 (18) C6—N3 1.407 (3)	
Zn1—O1 ⁱ 2.2386 (17) C6—C7 1.432 (2)	
Zn1—O1 2.2386 (17) C7—C8 1.412 (2	.)	
N1—C1 1.468 (3) C7—C12 1.427 (2)	
N1—H1A 0.836 (18) C8—C9 1.361 (3)	
N1—H1B 0.86 (2) C8—H8 0.9300		
N2—C2 1.473 (3) C9—C10 1.398 (3)	
N2—H2A 0.87 (2) C9—H9 0.9300		
N2—H2B 0.915 (18) C10—C11 1.362 (2)	
O1—H1E 0.79 (2) C10—H10 0.9300		
O1—H1F 0.75 (2) C11—C12 1.421 (2)	
C1—C2 1.517 (3) C11—H11 0.9300		
C1—H1C 0.9700 N3—H3A 0.782 (1	9)	
C1—H1D 0.9700 N3—H3B 0.836 (1	9)	
C2—H2C 0.9700 O2—S1 1.4573 (15)	
C2—H2D 0.9700 O3—S1 1.4504 (16)	
C3—C4 1.369 (3) O4—S1 1.4674 (15)	
C3—C12 1.430 (2) O5—H5A 0.77 (2)	0.77 (2)	
C3—S1 1.7719 (17) O5—H5B 0.87 (2)	0.87 (2)	
C4—C5 1.397 (3)		
N2—Zn1—N2 ⁱ 180.0 H2C—C2—H2D 108.2		
$N2-Zn1-N1^{i}$ 97.57 (8) C4-C3-C12 120.14 (16)	
$N2^{i}$ —Zn1—N1 ⁱ 82.43 (8) C4—C3—S1 118.09 (14)	
N2—Zn1—N1 82.43 (8) C12—C3—S1 121.59 (13)	
$N2^{i}$ —Zn1—N1 97.57 (8) C3—C4—C5 121.07 (17)	
N1 ⁱ —Zn1—N1 180.0 C3—C4—H4 119.5		
$N2-Zn1-O1^{i}$ 88.66 (7) C5-C4-H4 119.5		
$N2^{i}$ —Zn1—O1 ⁱ 91.34 (7) C6—C5—C4 121.12 (17)	
$N1^{i}$ —Zn1—O1 ⁱ 90.55 (7) C6—C5—H5 119.4		
$N1-Zn1-O1^{i}$ 89.45 (7) C4-C5-H5 119.4		
N2—Zn1—O1 91.34 (7) C5—C6—N3 119.74 (17)	
N2 ⁱ —Zn1—O1 88.66 (7) C5—C6—C7 119.88 (17)	
N1 ⁱ —Zn1—O1 89.45 (7) N3—C6—C7 120.29 (17)	
N1—Zn1—O1 90.55 (7) C8—C7—C12 119.09 (16)	

O1 ⁱ —Zn1—O1	180.0	C8—C7—C6	121.85 (16)
C1—N1—Zn1	105.95 (13)	C12—C7—C6	119.05 (16)
C1—N1—H1A	111.5 (16)	C9—C8—C7	121.18 (17)
Zn1—N1—H1A	110.4 (16)	С9—С8—Н8	119.4
C1—N1—H1B	109.7 (17)	С7—С8—Н8	119.4
Zn1—N1—H1B	110.5 (17)	C8—C9—C10	119.90 (17)
H1A—N1—H1B	109 (2)	С8—С9—Н9	120.0
C2—N2—Zn1	108.81 (13)	С10—С9—Н9	120.0
C2—N2—H2A	109.1 (16)	C11—C10—C9	121.03 (17)
Zn1—N2—H2A	107.2 (16)	C11—C10—H10	119.5
C2—N2—H2B	111.5 (15)	С9—С10—Н10	119.5
Zn1—N2—H2B	110.3 (15)	C10-C11-C12	120.88 (16)
H2A—N2—H2B	110 (2)	C10-C11-H11	119.6
Zn1—O1—H1E	115.4 (18)	C12—C11—H11	119.6
Zn1—O1—H1F	113 (2)	C11—C12—C7	117.90 (15)
H1E—O1—H1F	110 (3)	C11—C12—C3	123.41 (16)
N1—C1—C2	108.92 (17)	C7—C12—C3	118.69 (15)
N1—C1—H1C	109.9	C6—N3—H3A	108.4 (17)
C2—C1—H1C	109.9	C6—N3—H3B	116.3 (15)
N1—C1—H1D	109.9	H3A—N3—H3B	112 (2)
C2—C1—H1D	109.9	H5A—O5—H5B	106 (3)
H1C—C1—H1D	108.3	03—\$1—02	112.87 (9)
N2—C2—C1	109.75 (16)	03—\$1—04	111.00 (9)
N2—C2—H2C	109.7	02—\$1—04	111.66 (9)
C1—C2—H2C	109.7	O3—S1—C3	106.46 (9)
N2—C2—H2D	109.7	O2—S1—C3	108.76 (8)
C1—C2—H2D	109.7	O4—S1—C3	105.67 (9)
N2—Zn1—N1—C1	19.84 (14)	C6—C7—C8—C9	-178.60 (17)
$N2^{i}$ —Zn1—N1—C1	-160.16 (14)	C7—C8—C9—C10	-0.7 (3)
Ol^{i} Zn1 N1 C1	108.55 (14)	C8—C9—C10—C11	0.4 (3)
O1 - Zn1 - N1 - C1	-71 45 (14)	C9—C10—C11—C12	-0.3(3)
$N1^{i}$ $Zn1$ $N2$ $C2$	-171 14 (14)	C10-C11-C12-C7	0.7(3)
$N_1 - Z_{111} - N_2 - C_2$ $N_1 - Z_{11} - N_2 - C_2$	8 86 (14)	C10-C11-C12-C3	-179.36(17)
$O1^{i}$ Zm1 N2 C2	-80.76(14)	C_{8} C_{7} C_{12} C_{11}	-10(2)
01 - 2n1 - N2 - C2	99.24(14)	C_{6} C_{7} C_{12} C_{11}	1.0(2)
7 - 2 - 12 - 22	-44.7(2)	$C_{0}^{8} = C_{1}^{7} = C_{12}^{12} = C_{11}^{3}$	170.03(15)
2n1 - N1 - C1 - C2	-35.8(2)	$C_{6} = C_{7} = C_{12} = C_{3}$	-1.3(2)
N1 C1 C2 N2	55.4 (2)	$C_{0} = C_{1}^{2} = C_{12}^{2} = C_{13}^{2}$	1.5(2)
112 - C1 - C2 - 112	19(3)	S1_C3_C12_C11	-59(2)
S1_C3_C4_C5	-173 30 (14)	$C_{4} = C_{3} = C_{12} = C_{7}$	-0.9(3)
C_{3}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	-0.6(3)	$S_{1}^{-} = C_{3}^{-} = C_{12}^{-} = C_{7}^{-}$	$174 \pm 10(12)$
$C_{4} - C_{5} - C_{6} - N_{3}$	-178 31 (17)	$C_{1} = C_{1} = C_{1} = C_{1}$	174.10(12) 112.32(16)
C4-C5-C6-C7	-17(3)	$C_1^2 - C_3^2 - S_1^2 - O_3^3$	-62.78 (16)
$C_{5} - C_{6} - C_{7} - C_{8}$	-177 73 (17)	C4-C3-S1-O2	-125 78 (16)
N3-C6-C7-C8	-1 2 (3)	$C_1^2 = C_3^2 = S_1^2 = O_2^2$	59 12 (16)
C_{5} C_{6} C_{7} C_{12}	26(2)	C4-C3-S1-O4	-5 78 (17)
N3-C6-C7-C12	179 19 (16)	C12-C3-S1-O4	179 12 (14)
C12-C7-C8-C9	1.1 (3)		
	<u>\</u> - /		

Symmetry codes: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H…A
N1—H1B····O4 ⁱⁱ	0.86 (2)	2.41 (2)	3.170 (2)	147 (2)
N1—H1A····O2 ⁱⁱⁱ	0.836 (18)	2.570 (19)	3.337 (3)	153 (2)
N2—H2A····O2 ^{iv}	0.87 (2)	2.28 (2)	3.109 (2)	159 (2)
N2—H2B…O5	0.915 (18)	2.113 (19)	2.992 (3)	161 (2)
N3—H3A···O2 v	0.782 (19)	2.67 (2)	3.451 (2)	176 (2)
N3—H3B····O3 ^{vi}	0.836 (19)	2.246 (19)	3.076 (3)	171.6 (18)
O1—H1E…O5	0.79 (2)	2.08 (2)	2.834 (3)	158 (2)
O5—H5B…N3 ^{vii}	0.87 (2)	2.02 (2)	2.882 (3)	173 (3)
O5—H5A···O4 ^{viii}	0.77 (2)	2.15 (2)	2.918 (3)	172 (3)
O1—H1F···O4 ⁱⁱ	0.75 (2)	2.11 (2)	2.818 (2)	159 (3)
Symmetry codes: (ii) x, y-1, z; (iii) -x, y-1/2, -z+1/2	; (iv) $-x$, $-y+1$, $-z+1$; (v) -x+1, y+1/2, -	x+1/2; (vi) $-x+1$, $-y+1$	-2, - <i>z</i> ; (vii) - <i>x</i> +1,

-y+1, -z+1; (viii) x, -y+3/2, z+1/2.

Fig. 1

Fig. 2